Concise Review

Bioabsorbable Anchors in Glenohumeral Shoulder Surgery

Shane J. Nho, M.D., M.S., LCDR Matthew T. Provencher, M.D., MC, USN, Shane T. Seroyer, M.D., and Anthony A. Romeo, M.D.

Abstract: The use of implants to provide glenohumeral soft tissue fixation has changed dramatically over the past few decades, from point tack fixation to metallic suture anchors to bioabsorbable suture anchors. Bioabsorbable suture anchors have largely replaced metallic anchors because of concerns of implant loosening, migration, and chondral injury. Although the safety and efficacy of bioabsorbable anchors has been well documented, there are numerous reports regarding the early failure related to implant bioabsorbable implant breakage or premature degradation. Patients with anchor-related complications generally present with pain and/or stiffness, and the surgeon should have a high index of suspicion if a patient does not progress as expected. Glenohumeral synovitis, glenoid osteolysis, loose bodies, and chondral injury are some of the notable complications that have been reported. Careful attention to proper anchor insertion techniques can limit the potential for complications. Newer materials, such as polyetheretherketone and other composites, have recently been introduced. These materials may address concerns of biocompatibility and material strength, but additional rigorous in vitro and in vivo trials need to be conducted before their use becomes widespread. Key Words: Bioabsorbable anchors—Metallic anchors—Shoulder arthroscopy—Suture anchors.

The suture anchor is arguably the most important innovation in arthroscopic glenohumeral shoulder surgery. The ability to provide fixation of soft tissue to bone dramatically changed shoulder surgery from open repair to arthroscopic repair techniques. Before the suture anchor, there were a number of devices that attempted to repair the glenoid labrum, including metallic staple capsulorrhaphy, removable rivet capsulorrhaphy, cannulated screw fixation, the transglenoid suture technique, and glenoid tacks.1 Metallic devices implanted in the glenohumeral joint have historically performed very well. To achieve optimal success with metallic anchors, careful attention to proper insertion depth, in an area of adequate glenoid bone stock, and with optimal angle of insertion are all paramount to the prevention of devastating glenohumeral joint complications. However, metallic anchor migration, loosening, and breakage all have been described, which can result in severe premature degenerative changes of the glenohumeral joint. Because of concerns with metallic devices, a bioabsorbable alternative was first developed with a tack fixation device (Suretac; Smith & Nephew, Andover, MA), which provides point fixation of labral tissue to the glenoid.2 Suture anchors were introduced thereafter and since then have essentially replaced tissue tack devices.3

EVOLUTION OF SUTURE ANCHOR MATERIALS

Metallic suture anchors (G1; DePuy Mitek, Raynham, MA) loaded with simple braided polyester sutures were the first to be introduced and widely used in
shoulder arthroscopy. When introduced, these offered a viable alternative to transosseous suture techniques. Biomechanical studies reported a pull-out strength similar to that of transosseous bone tunnels,4 and the initial studies reported favorable results.5 These first-generation metallic anchor constructs failed by suture rupture through the metallic eyelet,6 and therefore there was a shift away from the use of simple braided polyester sutures, such as No. 2 Ethibond (Ethicon, Somerville, NJ) toward hybrid sutures with a core of ultrahigh molecular weight polyethylene (UHMWPE) surrounded by braided polyester. De Carli et al.7 examined failure mode and observed that Fiberwire (Arthrex, Naples, FL) constructs tended to fail by anchor slippage or eyelet rupture, whereas Ethibond constructs failed by suture breakage. After metallic anchor usage became common, reports emerged of complications associated with metallic anchors, including loosening, migration, chondral injury, difficulty with revision surgery, and interference with postoperative magnetic resonance imaging.8,9

Alternative materials were developed to avoid these potential devastating complications. Speer and Warren10 outlined 4 criteria for a bioabsorbable implant used in shoulder arthroscopy: (1) the implant must have an initial fixation strength to coapt the soft tissues to bone; (2) the material property and time to degradation of the implant must allow satisfactory strength while the healing tissues are regaining mechanical integrity; (3) the implant must not degrade too slowly to avoid the complications of metallic implants; and (4) the materials of the implant must not cause toxicity, antigenicity, pyrogenicity, or carcinogenicity.

BIOABSORBABLE MATERIAL PROPERTIES

Bioabsorbable materials used in orthopedic applications are natural, synthetic, or biosynthetic polymers that are biocompatible with the body and not supposed to elicit a foreign body reaction.11 Currently, there are at least 40 types of polymers that have been developed for use in surgery, but the most commonly used polymers are polyglycolic acid (PGA), polyactic acid enantiomers (PLA), and poly-D-L-lactic acid copolymer polyglycolic acid (PDLLA-co-PGA).11 The polymers are long-chain macromolecules composed of multiple covalently bonded subunits (monomers) and can be composed of a single repeating monomer or combinations of more than 1 monomer.11,12

The mechanical properties of a bioabsorbable implant changes over time in a physiologic environment as determined by the molecular weight (MW) and degree of crystallinity. The PGA implants have a degradation time of 3 to 4 months, whereas the PLLA implants have a degradation time between 10 to over 30 months, depending on the stereoisomers or self-reinforcement.11 The MW and crystallinity can be altered to optimize mechanical strength of an implant. For example, the polymers with a higher degree of crystallinity are stronger and degrade slower than amorphous polymers with the same chemistry.12 In vitro and in vivo studies indicate that these polymers degrade by nonspecific hydrolytic clipping of ester bonds.13,14 In the initial phase of degradation, chemical hydrolytic scission of the molecular chains occurs upon contact with water.13,15-18 The large degradation products cannot be phagocytized by local macrophages, leading to an acidic environment and further increasing the rate of hydrolysis.13,15 Once the structural integrity of the implant is compromised, microfractures occur within the implant, causing further hydrolysis until the monomers are able to be phagocytized by local macrophages and polymorphonuclear leukocytes.12

The first bioabsorbable tack was composed of (PGA) polymers (Suretac) which provided point fixation of soft tissue to bone. Early reports showed a rapid loss of fixation strength resulting in loose bodies, synovitis, and osteolysis.19-21 Warner et al.22,23 obtained histopathologic specimens and determined that giant cell reaction to the polyglyconate caused polymer debris. Because of the early resorption of PGA, suture anchors were manufactured with poly-L-lactic acid (PLLA), which degraded at a much slower rate. There were concerns that an excessively long period of degradation would not allow for complete osseous replacement and complications associated with metallic anchors.24,25 There are concerns that complete degradation of PLLA requires several years, and that complete osseous replacement has not reported in the literature.26-28 Incomplete or partial osseous replacement can result in the replacement of fibrous or fatty-fibrous tissue.29 PLLA was further refined to alter the amorphous nature by introducing copolymers of the levo- and dextro-stereoisomers, ultimately affecting the rate of degradation. Self-reinforcement of copolymers can also affect the mechanical properties of the bioabsorbable materials.11

LITERATURE REVIEW

There have been a number of case series and case reports about complications related to the use of bio-
absorbable suture anchors used in shoulder surgery (Fig 1). The authors have observed a number of bioabsorbable suture anchors that break with screw-in insertion. Additionally, the authors report that there appears to be an inconsistency in the quality of the bioabsorbable material. Barber reported 2 cases of failed bioabsorbable suture anchors. The first case was a result of rapid degradation of the suture anchor resulting in the nonabsorbable suture acting as a loose body. In the second case, the upper portion of the anchor and eyelet was detached from the implanted portion, and the author believes that it was the result of degradation of the implanted anchor and cyclic loading of the upper portion causing the anchor breakage. Cole and Provencher state that the technical issues related to anchor placement cannot be overem-

FIGURE 1. Severe osteolysis 3 years after mini-open rotator cuff repair with bioabsorbable suture anchor fixation. (A) Plain radiograph of anteroposterior view with osteolytic lesion in the greater tuberosity. (B) T2-weighted coronal magnetic resonance imaging scan showing severe osteolysis with subsidence of the bioabsorbable anchor into the proximal humerus. There is also a massive rotator cuff tear with high signal throughout the supraspinatus muscle belly and extensive synovitis. (C) Arthroscopic image shows osteolytic lesion of the greater tuberosity. (D) Arthroscopic image of the osteolytic lesion with remaining suture without evidence of the bioabsorbable anchor.
phased and may limit the failure of bioabsorbable anchors.

Athwal et al.32 reported the occurrence of osteolysis and arthropathy after the use of bioabsorbable knotless suture anchors composed of PLLA. Two of the 4 patients had complaints of pain, one had subtle instability and eventually pain, and the last patient reported a “grinding” sensation in the shoulder. All underwent repeat shoulder arthroscopy between 3.5 to 18 months after the index surgery and were found to have cartilage destruction of both the glenoid and the opposing humeral head, loose bodies, one or more loose anchors, and reactive synovitis. There were several factors that contributed to failure, including the large number of anchors per case, the fact that knotless anchors require deeper penetration of the anchor, and that bioknotless design resists pullout by frictional resistance. Freehill et al.33 reported 10 of 52 patients (19%) who underwent arthroscopic stabilization with PLLA polymer tacks. The patients presented with pain and progressive stiffness an average of 8 months after surgery. Repeat arthroscopy revealed synovitis (n = 10), gross implant debris (n = 9), and full-thickness chondral damage (n = 6) and underwent debridement, synovectomy, and removal of loose bodies, respectively. Seven patients reported no or minimal pain with full range of motion. The 3 patients with chondral damage had persistent symptoms of pain and stiffness (n = 2) and difficulty with overhand throwing (n = 1). Muller et al.34 reported 7 cases of asymptomatic glenoid osteolysis after stabilization with PLLA anchors, but none required repeat surgery or showed progressive arthritis (Table 1).

FUTURE DIRECTIONS

Alternative materials have recently been developed. Composite materials are generally a blend of tricalcium phosphate (TCP) and PLA, and several polymers have been developed for tendon-to-bone fixation (30% TCP and 70% PLGA—Biocryl Rapide, Depuy Mitek; 15% TCP and 85% PLA—BioComposite SutureTak, Arthrex). These were reported to have minimal tissue reaction with complete absorption followed by bone ingrowth (Fig 2). The PLGA copolymer is composed of 15% PGA and 85% PLLA.35 Studies performed by the manufacturer have showed resorption between 18 and 24 months and bone ingrowth by 24 months postsurgery (http://www.jnjgateway.com/public/USENG/ MiagroWhitePaper.pdf).

Polyetheretherketone (PEEK) is a material that has been widely used in trauma, orthopedics, and spine applications. PEEK-based implants are strong, relatively inert, radiolucent, and can be drilled out during revision cases.35 Several companies have already introduced suture anchors with PEEK material (Table 1).

TABLE 1. Complications Associated With Bioabsorbable Suture Anchors

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of Cases/Total Cases (%)</th>
<th>Anchor</th>
<th>Material</th>
<th>Procedure(s)</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athwal et al.32</td>
<td>4/25 (16)</td>
<td>Bioknotless</td>
<td>PLLA</td>
<td>SLAP, Bankart</td>
<td>Osteolysis of glenoid and arthropathy</td>
</tr>
<tr>
<td>Muller et al.34</td>
<td>7/15 (47%)</td>
<td>Bioresorbable</td>
<td>PLLA</td>
<td>Stabilization</td>
<td>Asymptomatic, no arthropathy</td>
</tr>
<tr>
<td>Freehill et al.33</td>
<td>10/52 (19%)</td>
<td>Bankart tack</td>
<td>PLLA/PDLLA</td>
<td>Stabilization</td>
<td>Glenohumeral synovitis (3)</td>
</tr>
<tr>
<td>Glueck et al.9</td>
<td>1/1 (100%)</td>
<td>Biocorkscrew</td>
<td>PDLLA</td>
<td>RCR</td>
<td>Osteolysis of greater tuberosity</td>
</tr>
<tr>
<td>Kelly37</td>
<td>1/1 (100%)</td>
<td>5.0-mm absorbable anchor</td>
<td>PDLLA</td>
<td>RCR</td>
<td>Early disintegration</td>
</tr>
</tbody>
</table>

 NOTE. The Bioknotless suture is manufactured by Mitek. Bioresorbable is manufactured by AO-ASIF Development Institute (Davos, Switzerland). The Bankart tack is manufactured by Bionx Implants (Blue Bell, PA). The Biocorkscrew and 5.0-mm absorbable anchor used in the study by Kelly37 are manufactured by Arthrex.

Abbreviations: PDLLA, poly-D-L-lactic acid; PLLA, poly-L-lactic acid; RCR, rotator cuff repair.

FIGURE 2. Composite suture anchor insertion.
There are efforts to develop PEEK composites. Barber et al. published a recent in vitro study to compare the pullout strength of the newer generation of suture anchors, including those composed of PEEK and Biocryl Rapide. This recent generation of anchors all showed remarkably high load-to-failure, and the fully threaded screw designs had the highest failure strength. To date, there are no published clinical reports of failures or complications as a result of these recently introduced materials.

<table>
<thead>
<tr>
<th>Anchor</th>
<th>Material</th>
<th>Size(s) (mm)</th>
<th>Suture</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinsa</td>
<td>PEEK-OPTIMA</td>
<td>2.9</td>
<td>No. 2 Ultrabraid (knotless)</td>
<td>Smith & Nephew</td>
</tr>
<tr>
<td>Kinsa RC</td>
<td>PEEK-OPTIMA</td>
<td>5.5</td>
<td>No. 2 Ultrabraid (knotless)</td>
<td>Smith & Nephew</td>
</tr>
<tr>
<td>Footprint PK</td>
<td>PEEK-OPTIMA</td>
<td>5.5 and 6.5</td>
<td>No. 2 Ultrabraid</td>
<td>Smith & Nephew</td>
</tr>
<tr>
<td>BioRaptor 2.3 PK</td>
<td>PEEK-OPTIMA</td>
<td>2.3</td>
<td>No. 2 Ultrabraid</td>
<td>Smith & Nephew</td>
</tr>
<tr>
<td>TwinFix PK FT</td>
<td>PEEK-OPTIMA</td>
<td>5.5 and 6.5</td>
<td>No. 2 Ultrabraid</td>
<td>Smith & Nephew</td>
</tr>
<tr>
<td>Healix PEEK</td>
<td>PEEK</td>
<td>4.5, 5.5, and 6.5</td>
<td>No. 2 Orthocord</td>
<td>DePuy Mitek</td>
</tr>
<tr>
<td>VersaLok</td>
<td>Titanium, PEEK</td>
<td>4.9 (expands to 6.3)</td>
<td>No. 2 Orthocord</td>
<td>DePuy Mitek</td>
</tr>
<tr>
<td>PEEK Corkscrew FT</td>
<td>PEEK</td>
<td>4.5, 5.5, and 6.5</td>
<td>No. 2 FiberWire</td>
<td>Arthrex</td>
</tr>
<tr>
<td>PEEK Pushlock</td>
<td>PEEK</td>
<td>2.9, 3.5, 4.5, and 5.5</td>
<td>No. 2 FiberWire</td>
<td>Arthrex</td>
</tr>
<tr>
<td>PEEK SutureTak</td>
<td>PEEK</td>
<td>3.0</td>
<td>No. 2 FiberWire</td>
<td>Arthrex</td>
</tr>
<tr>
<td>PEEK SwiveLock</td>
<td>PEEK</td>
<td>5.5</td>
<td>2-mm Fibertape</td>
<td>Arthrex</td>
</tr>
<tr>
<td>Hitch</td>
<td>PEEK-OPTIMA</td>
<td>2.4</td>
<td>Nos. 1 and 2 MaxBraid</td>
<td>Biomet</td>
</tr>
</tbody>
</table>

Abbreviation: PEEK, polyetheretherketone.

CONCLUSIONS

Suture anchors that enable tendon-to-bone fixation have changed dramatically over the past few decades from metallic to bioabsorbable. With increased use, there has been a growing body of literature of case reports and small case series of failures and/or complications related to the use of bioabsorbable suture anchors. Bioabsorbable implant breakage or premature degradation raises concerns about the biomechanical strength and material properties. Reports of synovitis, glenoid osteolysis, loose bodies, cartilage injury, and the devastating potential end result of arthropathy have all been reported with suture anchors. Adherence to proper anchor insertion techniques should limit and hopefully eliminate the possibility of iatrogenic injury. Advancements in suture anchor technology have brought about dramatic change in shoulder arthroscopy, but enthusiasm for innovation must be tempered with scientific evidence and judicious oversight.

REFERENCES

15. Ciccone WJ 2nd, Motz C, Bentley C, Tasto JP. Bioabsorbable

